When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    The high performance of the BERT model could also be attributed [citation needed] to the fact that it is bidirectionally trained. This means that BERT, based on the Transformer model architecture, applies its self-attention mechanism to learn information from a text from the left and right side during training, and consequently gains a deep ...

  3. llama.cpp - Wikipedia

    en.wikipedia.org/wiki/Llama.cpp

    The GGUF (GGML Universal File) [30] file format is a binary format that stores both tensors and metadata in a single file, and is designed for fast saving, and loading of model data. [31] It was introduced in August 2023 by the llama.cpp project to better maintain backwards compatibility as support was added for other model architectures.

  4. Mixed-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Mixed-precision_arithmetic

    PyTorch implements automatic mixed-precision (AMP), which performs autocasting, gradient scaling, and loss scaling. [6] [7] The weights are stored in a master copy at a high precision, usually in FP32. Autocasting means automatically converting a floating-point number between different precisions, such as from FP32 to FP16, during training.

  5. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  7. Open Neural Network Exchange - Wikipedia

    en.wikipedia.org/wiki/Open_Neural_Network_Exchange

    The Open Neural Network Exchange (ONNX) [ˈɒnɪks] [2] is an open-source artificial intelligence ecosystem [3] of technology companies and research organizations that establish open standards for representing machine learning algorithms and software tools to promote innovation and collaboration in the AI sector.

  8. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    The adaptive mixtures of local experts [5] [6] uses a gaussian mixture model.Each expert simply predicts a gaussian distribution, and totally ignores the input. Specifically, the -th expert predicts that the output is (,), where is a learnable parameter.

  9. Neuro-symbolic AI - Wikipedia

    en.wikipedia.org/wiki/Neuro-symbolic_AI

    Approaches for integration are diverse. [10] Henry Kautz's taxonomy of neuro-symbolic architectures [11] follows, along with some examples: . Symbolic Neural symbolic is the current approach of many neural models in natural language processing, where words or subword tokens are the ultimate input and output of large language models.