When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. CPLEX - Wikipedia

    en.wikipedia.org/wiki/CPLEX

    The IBM ILOG CPLEX Optimizer solves integer programming problems, very large [3] linear programming problems using either primal or dual variants of the simplex method or the barrier interior point method, convex and non-convex quadratic programming problems, and convex quadratically constrained problems (solved via second-order cone programming, or SOCP).

  3. Qiskit - Wikipedia

    en.wikipedia.org/wiki/QISKit

    Qiskit is made of elements that work together to enable quantum computing. The central goal of Qiskit is to build a software stack that makes it easier for anyone to use quantum computers, regardless of their skill level or area of interest; Qiskit allows users to design experiments and applications and run them on real quantum computers and/or classical simulators.

  4. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".

  5. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    One application of machine learning is to perform regression from training data to build a correlation. In this example, deep learning generates a model from training data that is generated with the function ⁡ (). An artificial neural network with three layers is used for this example. The first layer is linear, the second layer has a ...

  6. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  7. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    HiGHS has an interior point method implementation for solving LP problems, based on techniques described by Schork and Gondzio (2020). [10] It is notable for solving the Newton system iteratively by a preconditioned conjugate gradient method, rather than directly, via an LDL* decomposition. The interior point solver's performance relative to ...

  8. Double descent - Wikipedia

    en.wikipedia.org/wiki/Double_descent

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  9. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    However, this loss function is non-convex and non-smooth, and solving for the optimal solution is an NP-hard combinatorial optimization problem. [4] As a result, it is better to substitute loss function surrogates which are tractable for commonly used learning algorithms, as they have convenient properties such as being convex and smooth.