Search results
Results From The WOW.Com Content Network
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work and/or mass flow.
For example, in a reciprocating engine, a fixed wall means the piston is locked at its position; then, a constant volume process may occur. In that same engine, a piston may be unlocked and allowed to move in and out. Ideally, a wall may be declared adiabatic, diathermal, impermeable, permeable, or semi-permeable. Actual physical materials that ...
Most of the atmospheric heating is done by the Earth's surface as the atmosphere is transparent to solar radiation in most parts of the spectrum. [6] Considering only pure radiative equilibrium, the layer close to the surface heats strongly and becomes unstable. To balance this instability, atmospheric motions, like convective updrafts ...
As air moves towards the equator near the Earth's surface, it accumulates entropy from the surface either by direct heating or the flux of sensible or latent heat. In the ascending branch of a Hadley cell, the ascent of air is approximately an adiabatic process with respect to the surrounding environment.
Adiabatic (from Gr. ἀ negative + διάβασις passage; transference) refers to any process that occurs without heat transfer. This concept is used in many areas of physics and engineering. This concept is used in many areas of physics and engineering.
Energy may be transferred into a system by heating, compression, or addition of matter, and extracted from a system by cooling, expansion, or extraction of matter. In mechanics , for example, energy transfer equals the product of the force applied to a body and the resulting displacement.
Adiabatic work is done without matter transfer and without heat transfer. In principle, in thermodynamics, for a process in a closed system, the quantity of heat transferred is defined by the amount of adiabatic work that would be needed to effect the change in the system that is occasioned by the heat transfer.
We see that the adiabatic flame temperature of the constant pressure process is lower than that of the constant volume process. This is because some of the energy released during combustion goes, as work, into changing the volume of the control system. Adiabatic flame temperatures and pressures as a function of ratio of air to iso-octane.