Search results
Results From The WOW.Com Content Network
Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.
The function which is to be dv is whichever comes last in the list. The reason is that functions lower on the list generally have simpler antiderivatives than the functions above them. The rule is sometimes written as "DETAIL", where D stands for dv and the top of the list is the function chosen to be dv. An alternative to this rule is the ...
An intersection point is said isolated if it does not belong to a component of positive dimension of the intersection; the terminology make sense, since an isolated intersection point has neighborhoods (for Zariski topology or for the usual topology in the case of complex hypersurfaces) that does not contain any other intersection point.
In geometry, a degenerate conic is a conic (a second-degree plane curve, defined by a polynomial equation of degree two) that fails to be an irreducible curve.This means that the defining equation is factorable over the complex numbers (or more generally over an algebraically closed field) as the product of two linear polynomials.
Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:
A linear function is a polynomial function in which the variable x has degree at most one: [2] = +. Such a function is called linear because its graph, the set of all points (, ()) in the Cartesian plane, is a line. The coefficient a is called the slope of the function and of the line (see below).
For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and ...
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.