Search results
Results From The WOW.Com Content Network
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution.
where ¯ is the mean of ln(x). The last definition shows that MLD is nonnegative, since ¯ ¯ by Jensen's inequality. MLD has been called "the standard deviation of ln(x)", [1] (SDL) but this is not correct. The SDL is
Both the "compatibility" function STDEVP and the "consistency" function STDEV.P in Excel 2010 return the 0.5 population standard deviation for the given set of values. However, numerical inaccuracy still can be shown using this example by extending the existing figure to include 10 15 , whereupon the erroneous standard deviation found by Excel ...
Taking the mean μ of X to be 0, the median of Y will be 1, independent of the standard deviation σ of X. This is so because X has a symmetric distribution, so its median is also 0. The transformation from X to Y is monotonic, and so we find the median e 0 = 1 for Y. When X has standard deviation σ = 0.25, the distribution of Y is weakly
where μ and σ are the mean and standard deviation of the variable’s logit (by definition, the variable’s logit is normally distributed). The density obtained by changing the sign of μ is symmetrical, in that it is equal to f(1-x;-μ,σ), shifting the mode to the other side of 0.5 (the midpoint of the (0,1) interval).
where B is the incomplete beta function. A Poisson compounded with Log( p )-distributed random variables has a negative binomial distribution . In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ...
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
For example, the parameter (the expectation) can be estimated by the mean of the data and the parameter (the variance) can be estimated from the standard deviation of the data. The mean is found as = /, where is the data value and the number of data, while the standard deviation is calculated as = (). With these parameters many distributions, e ...