Search results
Results From The WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
The above expansion holds because the derivative of e x with respect to x is also e x, and e 0 equals 1. This leaves the terms ( x − 0) n in the numerator and n ! in the denominator of each term in the infinite sum.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
Differentiating term-wise the binomial series within the disk of convergence | x | < 1 and using formula , one has that the sum of the series is an analytic function solving the ordinary differential equation (1 + x)u′(x) − αu(x) = 0 with initial condition u(0) = 1. The unique solution of this problem is the function u(x) = (1 + x) α.
and can be found by examination of the coefficient of in the expansion of (1 + x) m (1 + x) n−m = (1 + x) n using equation . When m = 1, equation reduces to equation . In the special case n = 2m, k = m, using , the expansion becomes (as seen in Pascal's triangle at right)
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
For | x – c | = r, there is no general statement on the convergence of the series. However, Abel's theorem states that if the series is convergent for some value z such that | z – c | = r, then the sum of the series for x = z is the limit of the sum of the series for x = c + t (z – c) where t is a real variable less than 1 that tends to 1.