When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quadratic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Quadratic_reciprocity

    If q ≡ 1 (mod 4) then q is a quadratic residue (mod p) if and only if there exists some integer b such that p ≡ b 2 (mod q). If q3 (mod 4) then q is a quadratic residue (mod p) if and only if there exists some integer b which is odd and not divisible by q such that p ≡ ±b 2 (mod 4q). This is equivalent to quadratic reciprocity.

  3. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    This shows again that any rational root of P is positive, and the only remaining candidates are 2 and 2\3. To show that 2 is not a root, it suffices to remark that if x = 2 , {\displaystyle x=2,} then 3 x 3 {\displaystyle 3x^{3}} and 5 x − 2 {\displaystyle 5x-2} are multiples of 8 , while − 5 x 2 {\displaystyle -5x^{2}} is not.

  4. If and only if - Wikipedia

    en.wikipedia.org/wiki/If_and_only_if

    In writing, phrases commonly used as alternatives to P "if and only if" Q include: Q is necessary and sufficient for P, for P it is necessary and sufficient that Q, P is equivalent (or materially equivalent) to Q (compare with material implication), P precisely if Q, P precisely (or exactly) when Q, P exactly in case Q, and P just in case Q. [3]

  5. Cubic reciprocity - Wikipedia

    en.wikipedia.org/wiki/Cubic_reciprocity

    Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x 3p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x 3p (mod q) is solvable if and only if ...

  6. Modus tollens - Wikipedia

    en.wikipedia.org/wiki/Modus_tollens

    Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

  7. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    A number a is a root of a polynomial P if and only if the linear polynomial x − a divides P, that is if there is another polynomial Q such that P = (x − a) Q. It may happen that a power (greater than 1) of x − a divides P; in this case, a is a multiple root of P, and otherwise a is a simple root of P.

  8. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "PQ" (P implies Q).

  9. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    If two primes which end in 3 or 7 and surpass by 3 a multiple of 4 are multiplied, then their product will be composed of a square and the quintuple of another square. In other words, if p, q are of the form 20k + 3 or 20k + 7, then pq = x 2 + 5y 2. Euler later extended this to the conjecture that