Search results
Results From The WOW.Com Content Network
Numerov's method (also called Cowell's method) is a numerical method to solve ordinary differential equations of second order in which the first-order term does not appear. It is a fourth-order linear multistep method. The method is implicit, but can be made explicit if the differential equation is linear.
In mathematics, Fuchs' theorem, named after Lazarus Fuchs, states that a second-order differential equation of the form ″ + ′ + = has a solution expressible by a generalised Frobenius series when (), () and () are analytic at = or is a regular singular point.
For example, if f(x) is a twice differentiable function of one variable, the differential equation ″ + ′ = may be rewritten in the form =, where = + is a second order linear constant coefficient differential operator acting on functions of x.
The order of the differential equation is the highest order of derivative of the unknown function that appears in the differential equation. For example, an equation containing only first-order derivatives is a first-order differential equation, an equation containing the second-order derivative is a second-order differential equation, and so on.
The zeros of two linearly independent solutions of the Airy equation ″ = alternate, as predicted by the Sturm separation theorem.. In mathematics, in the field of ordinary differential equations, Sturm separation theorem, named after Jacques Charles François Sturm, describes the location of roots of solutions of homogeneous second order linear differential equations.
For example, the second-order equation y′′ = −y can be rewritten as two first-order equations: y′ = z and z′ = −y. In this section, we describe numerical methods for IVPs, and remark that boundary value problems (BVPs) require a different set of tools. In a BVP, one defines values, or components of the solution y at more than one ...
Chebyshev's equation is the second order linear differential equation + = where p is a real (or complex) constant. The equation is named after Russian mathematician Pafnuty Chebyshev. The solutions can be obtained by power series:
The Poisson equation is a slightly more general second-order linear elliptic PDE, in which f is not required to vanish. For both of these equations, the ellipticity constant θ can be taken to be 1. The terminology elliptic partial differential equation is not used consistently throughout the literature