Search results
Results From The WOW.Com Content Network
Cipher algorithms and cryptographic hashes can be used as very high-quality pseudorandom number generators. However, generally they are considerably slower (typically by a factor 2–10) than fast, non-cryptographic random number generators.
Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols is generated that cannot be reasonably predicted better than by random chance. This means that the particular outcome sequence will contain some patterns detectable in hindsight but impossible to foresee.
A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), [1] is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers.
A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation. The method represents one of the oldest and best-known pseudorandom number generator algorithms.
In many applications, the deterministic process is a computer algorithm called a pseudorandom number generator, which must first be provided with a number called a random seed. Since the same seed will yield the same sequence every time, it is important that the seed be well chosen and kept hidden, especially in security applications, where the ...
In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...
'Generate numbers' is run when all integers have been output. For a w -bit word length, the Mersenne Twister generates integers in the range [ 0 , 2 w − 1 ] {\displaystyle [0,2^{w}-1]} . The Mersenne Twister algorithm is based on a matrix linear recurrence over a finite binary field F 2 {\displaystyle {\textbf {F}}_{2}} .
Blum Blum Shub takes the form + =, where M = pq is the product of two large primes p and q.At each step of the algorithm, some output is derived from x n+1; the output is commonly either the bit parity of x n+1 or one or more of the least significant bits of x n+1.