When.com Web Search

  1. Ads

    related to: one to functions on graph theory

Search results

  1. Results From The WOW.Com Content Network
  2. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).

  3. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    A function is bijective if it is both injective and surjective. A bijective function is also called a bijection or a one-to-one correspondence (not to be confused with one-to-one function, which refers to injection). A function is bijective if and only if every possible image is mapped to by exactly one argument. [1]

  4. Bijection - Wikipedia

    en.wikipedia.org/wiki/Bijection

    Functions which satisfy property (4) are said to be "one-to-one functions" and are called injections (or injective functions). [2] With this terminology, a bijection is a function which is both a surjection and an injection, or using other words, a bijection is a function which is both "one-to-one" and "onto". [3]

  5. Injective function - Wikipedia

    en.wikipedia.org/wiki/Injective_function

    In mathematics, an injective function (also known as injection, or one-to-one function [1]) is a function f that maps distinct elements of its domain to distinct elements of its codomain; that is, x 1 ≠ x 2 implies f(x 1) ≠ f(x 2) (equivalently by contraposition, f(x 1) = f(x 2) implies x 1 = x 2).

  6. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  7. Graph operations - Wikipedia

    en.wikipedia.org/wiki/Graph_operations

    There are two definitions. In the most common one, the disjoint union of graphs, the union is assumed to be disjoint. Less commonly (though more consistent with the general definition of union in mathematics) the union of two graphs is defined as the graph (V 1 ∪ V 2, E 1 ∪ E 2). graph intersection: G 1 ∩ G 2 = (V 1 ∩ V 2, E 1 ∩ E 2); [1]

  8. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    In the simplest case one variable is plotted as a function of another, typically using rectangular axes; see Plot (graphics) for details. A graph of a function is a special case of a relation. In the modern foundations of mathematics, and, typically, in set theory, a function is actually equal to its graph. [1]

  9. Logic of graphs - Wikipedia

    en.wikipedia.org/wiki/Logic_of_graphs

    These thresholds can never be an irrational power of , so random graphs where the edge inclusion probability is an irrational power obey a zero-one law analogous to the one for uniformly random graphs. A similar zero-one law holds for very sparse random graphs that have an edge inclusion probability of with >, as long as is not a ...