Search results
Results From The WOW.Com Content Network
The harmonic mean of a set of positive integers is the number of numbers times the reciprocal of the sum of their reciprocals. The optic equation requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c. All solutions are given by a = mn + m 2, b = mn + n 2, c = mn.
Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n.It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number.
The product of a non-zero fraction and its reciprocal is 1, hence the reciprocal is the multiplicative inverse of a fraction. The reciprocal of a proper fraction is improper, and the reciprocal of an improper fraction not equal to 1 (that is, numerator and denominator are not equal) is a proper fraction.
Such irrational numbers share an evident property: they have the same fractional part as their reciprocal, since these numbers differ by an integer. The reciprocal function plays an important role in simple continued fractions, which have a number of remarkable properties relating to the representation of (both rational and) irrational numbers.
This, for cyclic fractions with long repetends, allows us to easily predict what the result of multiplying the fraction by any natural number n will be, as long as the repetend is known. A proper prime is a prime p which ends in the digit 1 in base 10 and whose reciprocal in base 10 has a repetend with length p − 1.
Every finite continued fraction represents a rational number, and every rational number can be represented in precisely two different ways as a finite continued fraction, with the conditions that the first coefficient is an integer and the other coefficients are positive integers. These two representations agree except in their final terms.
Graph of the fractional part of real numbers The fractional part or decimal part [ 1 ] of a non‐negative real number x {\displaystyle x} is the excess beyond that number's integer part . The latter is defined as the largest integer not greater than x , called floor of x or ⌊ x ⌋ {\displaystyle \lfloor x\rfloor } .
Rules for calculating the periods of repeating decimals from rational fractions were given by James Whitbread Lee Glaisher in 1878. [5] For a prime p, the period of its reciprocal divides p − 1. [6] The sequence of recurrence periods of the reciprocal primes (sequence A002371 in the OEIS) appears in the 1973 Handbook of Integer Sequences.