Search results
Results From The WOW.Com Content Network
It is advised to check the references for photos of reaction results. [1] Reagent testers might show the colour of the desired substance while not showing a different colour for a more dangerous additive. [2]
The color of chemicals is a physical property of chemicals that in most cases comes from the excitation of electrons due to an absorption of energy performed by the chemical. The study of chemical structure by means of energy absorption and release is generally referred to as spectroscopy .
Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...
Usually, the color change is not instantaneous at the pK a or pK b value, but a pH range exists where a mixture of colors is present. This pH range varies between indicators, but as a rule of thumb, it falls between the pK a or pK b value plus or minus one. This assumes that solutions retain their color as long as at least 10% of the other ...
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
In chemistry, chromism is a process that induces a change, often reversible, in the colors of compounds. In most cases, chromism is based on a change in the electron states of molecules, especially the π- or d-electron state, so this phenomenon is induced by various external stimuli which can alter the electron density of substances. It is ...
Several of the CPK colors refer mnemonically to colors of the pure elements or notable compound. For example, hydrogen is a colorless gas, carbon as charcoal, graphite or coke is black, sulfur powder is yellow, chlorine is a greenish gas, bromine is a dark red liquid, iodine in ether is violet, amorphous phosphorus is red, rust is dark orange-red, etc.
The equipment required is a colorimeter, some cuvettes and a suitable color reagent. The process may be automated, e.g. by the use of an AutoAnalyzer or by flow injection analysis . Recently, colorimetric analyses developed for colorimeters have been adapted for use with plate readers to speed up analysis and reduce the waste stream.