Ads
related to: projective plane mathematics examples worksheet pictures and solutions
Search results
Results From The WOW.Com Content Network
The archetypical example is the real projective plane, also known as the extended Euclidean plane. [1] This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by PG(2, R), RP 2, or P 2 (R), among other notations.
In finite geometry, PG(3, 2) is the smallest three-dimensional projective space. It can be thought of as an extension of the Fano plane. It has 15 points, 35 lines, and 15 planes. [1] It also has the following properties: [2] Each point is contained in 7 lines and 7 planes. Each line is contained in 3 planes and contains 3 points.
Qvist's theorem [3] [4]. Let Ω be an oval in a finite projective plane of order n. (a) If n is odd, every point P ∉ Ω is incident with 0 or 2 tangents. (b) If n is even, there exists a point N, the nucleus or knot, such that, the set of tangents to oval Ω is the pencil of all lines through N.
Projective geometry is not necessarily concerned with curvature and the real projective plane may be twisted up and placed in the Euclidean plane or 3-space in many different ways. [1] Some of the more important examples are described below. The projective plane cannot be embedded (that is without intersection) in three-dimensional Euclidean space.
Rational Bézier curve – polynomial curve defined in homogeneous coordinates (blue) and its projection on plane – rational curve (red) In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, [1] [2] [3] are a system of coordinates used in projective geometry, just as Cartesian coordinates are used ...
A Hughes plane H: [1] is a non-Desarguesian projective plane of odd square prime power order of Lenz-Barlotti type I.1, has a Desarguesian Baer subplane H 0, is a self-dual plane in which every orthogonal polarity of H 0 can be extended to a polarity of H, every central collineation of H 0 extends to a central collineation of H, and
C ∗ is also a projective plane, called the dual plane of C. If C and C ∗ are isomorphic, then C is called self-dual. The projective planes PG(2, K) for any field (or, more generally, for every division ring (skewfield) isomorphic to its dual) K are self-dual. In particular, Desarguesian planes of finite order are always self-dual.
The archetypical example is the real projective plane, also known as the extended Euclidean plane. [4] This example, in slightly different guises, is important in algebraic geometry, topology and projective geometry where it may be denoted variously by PG(2, R), RP 2, or P 2 (R), among other notations. There are many other projective planes ...