Search results
Results From The WOW.Com Content Network
The binomial distribution is the basis for the binomial test of statistical significance. [1] The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. If the sampling is carried out without replacement, the draws are not independent and so the ...
The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution. The multivariate t-distribution, a generalization of the Student's t-distribution. The negative multinomial distribution, a generalization of the negative binomial distribution.
A simple example of a binomial distribution is the set of various possible outcomes, and their probabilities, for the number of heads observed when a coin is flipped ten times. The observed binomial proportion is the fraction of the flips that turn out to be heads.
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
However, as the example below shows, the binomial test is not restricted to this case. When there are more than two categories, and an exact test is required, the multinomial test, based on the multinomial distribution, must be used instead of the binomial test. [1] Most common measures of effect size for Binomial tests are Cohen's h or Cohen's g.
Some distributions have been specially named as compounds: beta-binomial distribution, Beta negative binomial distribution, gamma-normal distribution. Examples: If X is a Binomial(n,p) random variable, and parameter p is a random variable with beta(α, β) distribution, then X is distributed as a Beta-Binomial(α,β,n).
Binomial distribution, for the number of "positive occurrences" (e.g. successes, yes votes, etc.) given a fixed total number of independent occurrences; Negative binomial distribution, for binomial-type observations but where the quantity of interest is the number of failures before a given number of successes occurs
The beta-binomial distribution is the binomial distribution in which the probability of success at each of n trials is not fixed but randomly drawn from a beta distribution. It is frequently used in Bayesian statistics , empirical Bayes methods and classical statistics to capture overdispersion in binomial type distributed data.