When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix. The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive ...

  3. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  4. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.

  5. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    The reason the sample covariance matrix has in the denominator rather than is essentially that the population mean ⁡ is not known and is replaced by the sample mean ¯. If the population mean E ⁡ ( X ) {\displaystyle \operatorname {E} (\mathbf {X} )} is known, the analogous unbiased estimate is given by

  6. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.

  7. Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Wishart_distribution

    (Here Θ is any matrix with the same dimensions as V, 1 indicates the identity matrix, and i is a square root of −1). [9] Properly interpreting this formula requires a little care, because noninteger complex powers are multivalued; when n is noninteger, the correct branch must be determined via analytic continuation. [14]

  8. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    Analysis of covariance (ANCOVA) is a general linear model that blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables.

  9. Sample covariance matrix - Wikipedia

    en.wikipedia.org/?title=Sample_covariance_matrix&...

    move to sidebar hide. From Wikipedia, the free encyclopedia