Search results
Results From The WOW.Com Content Network
The sum of Euler's totient function φ(x) over the first twenty integers is 128. [4] 128 can be expressed by a combination of its digits with mathematical operators, thus 128 = 2 8 − 1, making it a Friedman number in base 10. [5] A hepteract has 128 vertices. 128 is the only 3-digit number that is a 7th power (2 7).
The twelfth root of two or (or equivalently /) is an algebraic irrational number, approximately equal to 1.0594631. It is most important in Western music theory , where it represents the frequency ratio ( musical interval ) of a semitone ( Play ⓘ ) in twelve-tone equal temperament .
Ratio of a circle's circumference to its radius. Equal to : 1900 to 1600 BCE [2] Square root of 2, Pythagoras constant [4] 1.41421 35623 73095 04880 [Mw 2] [OEIS 3] Positive root of = 1800 to 1600 BCE [5] Square root of 3, Theodorus' constant [6]
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
However, Leonhard Euler [2] believed it originated from the letter "r", the first letter of the Latin word "radix" (meaning "root"), referring to the same mathematical operation. The symbol was first seen in print without the vinculum (the horizontal "bar" over the numbers inside the radical symbol) in the year 1525 in Die Coss by Christoff ...
The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.
The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as 2 {\displaystyle {\sqrt {2}}} or 2 1 / 2 {\displaystyle 2^{1/2}} .
In a wider sense, it also includes exponentiation, extraction of roots, and logarithm. [2] The term arithmetic has its root in the Latin term arithmetica which derives from the Ancient Greek words ἀριθμός (arithmos), meaning ' number ', and ἀριθμητική τέχνη (arithmetike tekhne), meaning ' the art of counting '. [3]