Search results
Results From The WOW.Com Content Network
A differentiable function. In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain.In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain.
In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).
If a continuous function on an open interval (,) satisfies the equality () =for all compactly supported smooth functions on (,), then is identically zero. [1] [2]Here "smooth" may be interpreted as "infinitely differentiable", [1] but often is interpreted as "twice continuously differentiable" or "continuously differentiable" or even just "continuous", [2] since these weaker statements may be ...
the function f is n − 1 times continuously differentiable on the closed interval [a, b] and the n th derivative exists on the open interval (a, b), and; there are n intervals given by a 1 < b 1 ≤ a 2 < b 2 ≤ ⋯ ≤ a n < b n in [a, b] such that f (a k) = f (b k) for every k from 1 to n. Then there is a number c in (a, b) such that the n ...
If f is a differentiable function on ℝ (or an open interval) and x is a local maximum or a local minimum of f, then the derivative of f at x is zero. Points where f'(x) = 0 are called critical points or stationary points (and the value of f at x is called a critical value).
where x is thought of as a function of a new variable u and the function y on the left is expressed in terms of x while on the right it is expressed in terms of u. If y = f(x) where f is a differentiable function that is invertible, the derivative of the inverse function, if it exists, can be given by, [21]
In mathematics, Fermat's theorem (also known as interior extremum theorem) is a method to find the local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point (the function's derivative is zero at that point).
A regular homotopy between two immersions f and g from a manifold M to a manifold N is defined to be a differentiable function H : M × [0,1] → N such that for all t in [0, 1] the function H t : M → N defined by H t (x) = H(x, t) for all x ∈ M is an immersion, with H 0 = f, H 1 = g. A regular homotopy is thus a homotopy through immersions.