Search results
Results From The WOW.Com Content Network
This page was last edited on 13 October 2024, at 13:49 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
According to ISO 5725-1, accuracy consists of trueness (proximity of the mean of measurement results to the true value) and precision (repeatability or reproducibility of the measurement). While precision is a description of random errors (a measure of statistical variability), accuracy has two different definitions:
For example, if the mean height in a population of 21-year-old men is 1.75 meters, and one randomly chosen man is 1.80 meters tall, then the "error" is 0.05 meters; if the randomly chosen man is 1.70 meters tall, then the "error" is −0.05 meters.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
In bioinformatics, the root mean square deviation of atomic positions is the measure of the average distance between the atoms of superimposed proteins. In structure based drug design, the RMSD is a measure of the difference between a crystal conformation of the ligand conformation and a docking prediction.
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.
Measurement errors can be divided into two components: random and systematic. [2] Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Random errors create measurement uncertainty. Systematic errors are errors that are not determined ...
This page was last edited on 21 December 2024, at 20:12 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.