Search results
Results From The WOW.Com Content Network
The cause for the correlations in fMRI measurements is theorized to be "correlated firing rates of interconnected neurons." [18] Resting-state functional magnetic resonance imaging (rs-fMRI) has become a powerful tool to examine networks' functional connectivity throughout the brain, such as the default mode network (DMN). [19]
Functional magnetic resonance imaging data. Functional neuroimaging is the use of neuroimaging technology to measure an aspect of brain function, often with a view to understanding the relationship between activity in certain brain areas and specific mental functions.
Psychophysiological interaction (PPI) is a brain connectivity analysis method for functional brain imaging data, mainly functional magnetic resonance imaging (fMRI). It estimates context-dependent changes in effective connectivity (coupling) between brain regions.
Functional neuroimaging is one type of 'brain scanning'. It involves the measurement of brain activity. The measurement technique depends on the imaging technology (e.g., fMRI and PET). The scanner produces a 'map' of the area that is represented as voxels. Each voxel represents the activity of a specific volume in three-dimensional space.
The fMRI concept builds on the earlier MRI scanning technology and the discovery of properties of oxygen-rich blood. MRI brain scans use a strong, permanent, static magnetic field - expressed in Tesla (T) - to align nuclei in the brain region being studied. Another magnetic field, the gradient field, is then applied to spatially locate ...
CONN includes a user-friendly GUI to manage all aspects of functional connectivity analyses, [1] including preprocessing of functional and anatomical volumes, [2] elimination of subject-movement and physiological noise, [3] outlier scrubbing, [4] estimation of multiple connectivity and network measures, and population-level hypothesis testing.
Resting state fMRI (rs-fMRI or R-fMRI), also referred to as task-independent fMRI or task-free fMRI, is a method of functional magnetic resonance imaging (fMRI) that is used in brain mapping to evaluate regional interactions that occur in a resting or task-negative state, when an explicit task is not being performed.
Functional MRI (fMRI) Blood-oxygen-level dependent imaging: BOLD: Changes in oxygen saturation-dependent magnetism of hemoglobin reflects tissue activity. [26] Localizing brain activity from performing an assigned task (e.g. talking, moving fingers) before surgery, also used in research of cognition. [27] Magnetic resonance angiography (MRA ...