Search results
Results From The WOW.Com Content Network
An example of a Kaplan–Meier plot for two conditions associated with patient survival. The Kaplan–Meier estimator, [1] [2] also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a ...
This example uses a log-rank test for a difference in survival in the maintained versus non-maintained treatment groups in the aml data. The graph shows KM plots for the aml data broken out by treatment group, which is indicated by the variable "x" in the data. Kaplan–Meier graph by treatment group in aml
The problem with measuring overall survival by using the Kaplan-Meier or actuarial survival methods is that the estimates include two causes of death: deaths from the disease of interest and deaths from all other causes, which includes old age, other cancers, trauma and any other possible cause of death. In general, survival analysis is ...
It was prominently criticized in economics by Robert LaLonde (1986), [7] who compared estimates of treatment effects from an experiment to comparable estimates produced with matching methods and showed that matching methods are biased. Rajeev Dehejia and Sadek Wahba (1999) reevaluated LaLonde's critique and showed that matching is a good ...
An early paper to use the Kaplan–Meier estimator for estimating censored costs was Quesenberry et al. (1989), [3] however this approach was found to be invalid by Lin et al. [4] unless all patients accumulated costs with a common deterministic rate function over time, they proposed an alternative estimation technique known as the Lin ...
Paul Meier (July 24, 1924 – August 7, 2011) [1] was a statistician who promoted the use of randomized trials in medicine. [2] [3]Meier is known for introducing, with Edward L. Kaplan, the Kaplan–Meier estimator, [4] [5] a method for measuring how many patients survive a medical treatment from one duration to another, taking into account that the sampled population changes over time.
I beleive that an example calculation is necessary for a comprehensive description of the Kaplan-Meier estimate. However, I agree that the section is long, and it need not be in the middle of the article; it can be moved to the end for those readers who wish to see the example calculation. I have moved the section to the end.
It is used in survival theory, reliability engineering and life insurance to estimate the cumulative number of expected events. An "event" can be the failure of a non-repairable component, the death of a human being, or any occurrence for which the experimental unit remains in the "failed" state (e.g., death) from the point at which it changed on.