Search results
Results From The WOW.Com Content Network
Intercalated discs or lines of Eberth are microscopic identifying features of cardiac muscle. Cardiac muscle consists of individual heart muscle cells (cardiomyocytes) connected by intercalated discs to work as a single functional syncytium. By contrast, skeletal muscle consists of multinucleated muscle
Cardiac muscle (also called heart muscle or myocardium) is one of three types of vertebrate muscle tissues, the others being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall of the heart .
Their fractal branching pattern helps to maintain cardiac performance in both healthy and failing hearts by increasing contractility and stroke work. [3] Trabecular morphology is also important to intraventricular conduction, suggesting these complex structures are involved in cardiac electrophysiology as well as mechanical function. [ 4 ]
The moderator band (also known as septomarginal trabecula [1]) is a band of cardiac muscle found in the right ventricle of the heart. [2] [3] [4] It is well-marked in sheep and some other animals, including humans. It extends from the base of the anterior papillary muscle of the tricuspid valve to the ventricular septum. [2]
A sarcomere (Greek σάρξ sarx "flesh", μέρος meros "part") is the smallest functional unit of striated muscle tissue. [1] It is the repeating unit between two Z-lines. Skeletal muscles are composed of tubular muscle cells (called muscle fibers or myofibers) which are formed during embryonic myogenesis.
The main function of striated muscle tissue is to create force and contract. These contractions in cardiac muscle will pump blood throughout the body. In skeletal muscle the contractions enable breathing, movement, and posture maintenance. [1] Contractions in cardiac muscle tissue are due to a myogenic response of the heart's pacemaker cells ...
T-tubules (transverse tubules) are extensions of the cell membrane that penetrate into the center of skeletal and cardiac muscle cells.With membranes that contain large concentrations of ion channels, transporters, and pumps, T-tubules permit rapid transmission of the action potential into the cell, and also play an important role in regulating cellular calcium concentration.
Cardiac muscle tissue has autorhythmicity, the unique ability to initiate a cardiac action potential at a fixed rate – spreading the impulse rapidly from cell to cell to trigger the contraction of the entire heart. This autorhythmicity is still modulated by the endocrine and nervous systems. [1]