Search results
Results From The WOW.Com Content Network
This degenerate conic occurs as the limit case =, = in the pencil of hyperbolas of equations () = The limiting case a = 0 , b = 1 {\displaystyle a=0,b=1} is an example of a degenerate conic consisting of twice the line at infinity.
Often, the degenerate cases are the exceptional cases where changes to the usual dimension or the cardinality of the object (or of some part of it) occur. For example, a triangle is an object of dimension two, and a degenerate triangle is contained in a line , [ 3 ] which makes its dimension one.
If the conic is a circle, then another degenerate case says that for a triangle, the three points that appear as the intersection of a side line with the corresponding side line of the Gergonne triangle, are collinear. Six is the minimum number of points on a conic about which special statements can be made, as five points determine a conic.
If the conic is non-degenerate, the conjugates of a point always form a line and the polarity defined by the conic is a bijection between the points and lines of the extended plane containing the conic (that is, the plane together with the points and line at infinity). If the point p lies on the conic Q, the polar line of p is the tangent line ...
If a set of points is not in general linear position, it is called a degenerate case or degenerate configuration, which implies that they satisfy a linear relation that need not always hold. A fundamental application is that, in the plane, five points determine a conic, as long as the points are in general linear position (no three are collinear).
Being tangent to five given lines also determines a conic, by projective duality, but from the algebraic point of view tangency to a line is a quadratic constraint, so naive dimension counting yields 2 5 = 32 conics tangent to five given lines, of which 31 must be ascribed to degenerate conics, as described in fudge factors in enumerative ...
Likewise, a non-degenerate conic (polynomial equation in x and y with the sum of their powers in any term not exceeding 2, hence with degree 2) is uniquely determined by 5 points in general position (no three of which are on a straight line). The intuition of the conic case is this: Suppose the given points fall on, specifically, an ellipse.
In algebraic geometry, the conic sections in the projective plane form a linear system of dimension five, as one sees by counting the constants in the degree two equations. The condition to pass through a given point P imposes a single linear condition, so that conics C through P form a linear system of dimension 4.