Ad
related to: predicting synthesis reactions worksheet 1study.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Computer-assisted organic synthesis software is a type of application software used in organic chemistry in tandem with computational chemistry to help facilitate the tasks of designing, predicting, and producing chemical reactions. CAOS aims to identify a series of chemical reactions which, from a starting compound, can produce a desired molecule.
Hess's law states that the change of enthalpy in a chemical reaction is the same regardless of whether the reaction takes place in one step or several steps, provided the initial and final states of the reactants and products are the same. Enthalpy is an extensive property, meaning that its value is proportional to the system size. [4]
Le Chatelier–Braun principle analyzes the qualitative behaviour of a thermodynamic system when a particular one of its externally controlled state variables, say , changes by an amount , the 'driving change', causing a change , the 'response of prime interest', in its conjugate state variable , all other externally controlled state variables remaining constant.
The general outline for the organic synthesis of a CBS catalyst is shown below. The first leg of the reaction sequence starts from the azeotropic dehydration of a boronic acid (1) such as one based on toluene to a boroxine (2). This boroxine reacts with the proline derivative (3d) to form the basic oxazaborolidine CBS catalyst (4).
Cross-coupling reactions are important for the production of pharmaceuticals, [4] examples being montelukast, eletriptan, naproxen, varenicline, and resveratrol. [ 21 ] with Suzuki coupling being most widely used. [ 22 ]
This requires mixing the compounds in a reaction vessel, such as a chemical reactor or a simple round-bottom flask. Many reactions require some form of processing ("work-up") or purification procedure to isolate the final product. [1] The amount produced by chemical synthesis is known as the reaction yield.
The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone (also known as an azlactone). [1] [2] Azlactone chemistry: step 2 is a Perkin variation
The reaction conditions for the Kröhnke synthesis are generally facile and the reactions often proceed in high yields with reaction temperatures generally not exceeding 140 °C. [6] The Kröhnke synthesis is generally performed in either glacial acetic acid or methanol, but it can also be done under aqueous conditions, and more recently under ...