Search results
Results From The WOW.Com Content Network
Singly linked lists contain nodes which have a 'value' field as well as 'next' field, which points to the next node in line of nodes. Operations that can be performed on singly linked lists include insertion, deletion and traversal. A singly linked list whose nodes contain two fields: an integer value (data) and a link to the next node
The data structure consists of a doubly linked list and a 2–4 tree data structure, each modified to keep track of its minimum-priority element. The basic operation of the structure is to keep newly inserted elements in the doubly linked list, until a deletion would remove one of the list items, at which point they are all moved into the 2–4 ...
A schematic picture of the skip list data structure. Each box with an arrow represents a pointer and a row is a linked list giving a sparse subsequence; the numbered boxes (in yellow) at the bottom represent the ordered data sequence. Searching proceeds downwards from the sparsest subsequence at the top until consecutive elements bracketing the ...
Linked list. A doubly linked list has O(1) insertion and deletion at both ends, so it is a natural choice for queues. A regular singly linked list only has efficient insertion and deletion at one end. However, a small modification—keeping a pointer to the last node in addition to the first one—will enable it to implement an efficient queue.
In computer science, a hash table is a data structure that implements an associative array, ... Chained-Hash-Delete(T, k) delete x from the linked list T[h(k)] ...
A non-blocking linked list is an example of non-blocking data structures designed to implement a linked list in shared memory using synchronization primitives: Compare-and-swap; Fetch-and-add; Load-link/store-conditional; Several strategies for implementing non-blocking lists have been suggested.
A double-ended queue is represented as a sextuple (len_front, front, tail_front, len_rear, rear, tail_rear) where front is a linked list which contains the front of the queue of length len_front. Similarly, rear is a linked list which represents the reverse of the rear of the queue, of length len_rear.
Linked list implementations, especially one of a circular, doubly-linked list, can be simplified remarkably using a sentinel node to demarcate the beginning and end of the list. The list starts out with a single node, the sentinel node which has the next and previous pointers point to itself. This condition determines if the list is empty.