When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    The atomic binding energy of the atom is the energy required to disassemble an atom into free electrons and a nucleus. [4] It is the sum of the ionization energies of all the electrons belonging to a specific atom. The atomic binding energy derives from the electromagnetic interaction of the electrons with the nucleus, mediated by photons.

  3. BCS theory - Wikipedia

    en.wikipedia.org/wiki/BCS_theory

    A binding energy suggests two or more particles or other entities that are bound together in the superconducting state. This helped to support the idea of bound particles – specifically electron pairs – and together with the above helped to paint a general picture of paired electrons and their lattice interactions.

  4. Quantum chromodynamics binding energy - Wikipedia

    en.wikipedia.org/wiki/Quantum_chromodynamics...

    The gluon content of a hadron can be inferred from DIS measurements. Again, not all of the QCD binding energy is gluon interaction energy, but rather, some of it comes from the kinetic energy of the hadron's constituents. [3] Currently, the total QCD binding energy per hadron can be estimated through a combination of the factors mentioned.

  5. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    Chart of nuclides (isotopes) by binding energy, depicting the valley of stability. The diagonal line corresponds to equal numbers of neutrons and protons. Dark blue squares represent nuclides with the greatest binding energy, hence they correspond to the most stable nuclides. The binding energy is greatest along the floor of the valley of ...

  6. Orders of magnitude (energy) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(energy)

    3.3×10 31 J: Total energy output of the Sun each day [240] [257] 10 32 1.71×10 32 J: Gravitational binding energy of the Earth [258] 3.10×10 32 J Yearly energy output of Sirius B, the ultra-dense and Earth-sized white dwarf companion of Sirius, the Dog Star. It has a surface temperature of about 25,200 K. [259] 10 33 2.7×10 33 J

  7. Trion (physics) - Wikipedia

    en.wikipedia.org/wiki/Trion_(physics)

    The binding energy of a trion is largely determined by the exchange interaction between the two electrons (holes). The ground state of a negatively charged trion is a singlet (total spin of two electrons S=0). The triplet state (total spin of two electrons S=1) is unbound in the absence of an additional potential or sufficiently strong magnetic ...

  8. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always a positive number, as the nucleus must gain energy for the nucleons to move apart from each other.

  9. Gravitational binding energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_binding_energy

    As the gas in a star becomes more relativistic, the gravitational binding energy required for hydrostatic equilibrium approaches zero and the star becomes unstable (highly sensitive to perturbations), which may lead to a supernova in the case of a high-mass star due to strong radiation pressure or to a black hole in the case of a neutron star.