Search results
Results From The WOW.Com Content Network
In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, [1] to obtain numerical solutions to ordinary ...
Examples of algorithms for this task include New Edge-Directed Interpolation (NEDI), [1] [2] Edge-Guided Image Interpolation (EGGI), [3] Iterative Curvature-Based Interpolation (ICBI), [citation needed] and Directional Cubic Convolution Interpolation (DCCI). [4] A study found that DCCI had the best scores in PSNR and SSIM on a series of test ...
The Theory of Functional Connections (TFC) is a mathematical framework specifically developed for functional interpolation.Given any interpolant that satisfies a set of constraints, TFC derives a functional that represents the entire family of interpolants satisfying those constraints, including those that are discontinuous or partially defined.
Download as PDF; Printable version; ... extrapolation is a type of ... a problem of extrapolation may be converted into an interpolation problem by the change of ...
) and the interpolation problem consists of yielding values at arbitrary points (,,, … ) {\displaystyle (x,y,z,\dots )} . Multivariate interpolation is particularly important in geostatistics , where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or ...
Linear interpolation on a data set (red points) consists of pieces of linear interpolants (blue lines). Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points.
The computed interpolation process is then used to insert many new values in between these key points to give a "smoother" result. In its simplest form, this is the drawing of two-dimensional curves. The key points, placed by the artist, are used by the computer algorithm to form a smooth curve either through, or near these points.
Nearest-neighbor interpolation (also known as proximal interpolation or, in some contexts, point sampling) is a simple method of multivariate interpolation in one or more dimensions. Interpolation is the problem of approximating the value of a function for a non-given point in some space when given the value of that function in points around ...