Search results
Results From The WOW.Com Content Network
The prior art includes an RF MEMS frequency tunable fractal antenna for the 0.1–6 GHz frequency range, [18] and the actual integration of RF MEMS switches on a self-similar Sierpinski gasket antenna to increase its number of resonant frequencies, extending its range to 8 GHz, 14 GHz and 25 GHz, [19] [20] an RF MEMS radiation pattern ...
MEMS resonators have operated at over a gigahertz. [61] Common bells are mechanically struck, while MEMS resonators are electrically driven. There are two base technologies used to build MEMS resonators that differ in how electrical drive and sense signals are transduced from the mechanical motion. These are electrostatic and piezoelectric. All ...
The cavities serve as resonators (tank circuits) to determine the frequency of the oscillators. A microwave cavity or radio frequency cavity (RF cavity) is a special type of resonator, consisting of a closed (or largely closed) metal structure that confines electromagnetic fields in the microwave or RF region of the spectrum.
A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical (including acoustic). Resonators are used to either ...
An early example of a MEMS device is the resonant-gate transistor, an adaptation of the MOSFET, developed by Robert A. Wickstrom for Harvey C. Nathanson in 1965. [4] Another early example is the resonistor, an electromechanical monolithic resonator patented by Raymond J. Wilfinger between 1966 and 1971.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
In electronics, a frequency multiplier is an electronic circuit that generates an output signal and that output frequency is a harmonic (multiple) of its input frequency. . Frequency multipliers consist of a nonlinear circuit that distorts the input signal and consequently generates harmonics of the input
A parallel resonant circuit can be used as load impedance in output circuits of RF amplifiers. Due to high impedance, the gain of amplifier is maximum at resonant frequency. Both parallel and series resonant circuits are used in induction heating. LC circuits behave as electronic resonators, which are a key component in many applications ...