Search results
Results From The WOW.Com Content Network
In general, a subdivision of a graph G (sometimes known as an expansion [2]) is a graph resulting from the subdivision of edges in G. The subdivision of some edge e with endpoints {u,v } yields a graph containing one new vertex w, and with an edge set replacing e by two new edges, {u,w } and {w,v }. For directed edges, this operation shall ...
Subgraph isomorphism is a generalization of the graph isomorphism problem, which asks whether G is isomorphic to H: the answer to the graph isomorphism problem is true if and only if G and H both have the same numbers of vertices and edges and the subgraph isomorphism problem for G and H is true. However the complexity-theoretic status of graph ...
Switching {X,Y} in a graph. A two-graph is equivalent to a switching class of graphs and also to a (signed) switching class of signed complete graphs.. Switching a set of vertices in a (simple) graph means reversing the adjacencies of each pair of vertices, one in the set and the other not in the set: thus the edge set is changed so that an adjacent pair becomes nonadjacent and a nonadjacent ...
The complement graph ¯ of a simple graph G is another graph on the same vertex set as G, with an edge for each two vertices that are not adjacent in G. complete 1. A complete graph is one in which every two vertices are adjacent: all edges that could exist are present. A complete graph with n vertices is often denoted K n.
A set of graphs isomorphic to each other is called an isomorphism class of graphs. The question of whether graph isomorphism can be determined in polynomial time is a major unsolved problem in computer science, known as the graph isomorphism problem. [1] [2] The two graphs shown below are isomorphic, despite their different looking drawings.
The canonical form of a graph is an example of a complete graph invariant: every two isomorphic graphs have the same canonical form, and every two non-isomorphic graphs have different canonical forms. [1] [2] Conversely, every complete invariant of graphs may be used to construct a canonical form. [3] The vertex set of an n-vertex graph may be ...
While graph drawing and graph representation are valid topics in graph theory, in order to focus only on the abstract structure of graphs, a graph property is defined to be a property preserved under all possible isomorphisms of a graph. In other words, it is a property of the graph itself, not of a specific drawing or representation of the graph.
A plot is a graphical technique for representing a data set, usually as a graph showing the relationship between two or more variables. The plot can be drawn by hand or by a computer. In the past, sometimes mechanical or electronic plotters were used. Graphs are a visual representation of the relationship between variables, which are very ...