Search results
Results From The WOW.Com Content Network
All cells contain the enzyme hexokinase, which catalyzes the conversion of glucose that has entered the cell into glucose-6-phosphate (G6P). Since the cell membrane is impervious to G6P, hexokinase essentially acts to transport glucose into the cells from which it can then no longer escape. Hexokinase is inhibited by high levels of G6P in the cell.
Insulin enables many types of cells to import and use glucose, and signals the liver to synthesize glycogen. Alpha cells produce less glucagon in response to rising glucose levels, and more glucagon if blood glucose is low. Glucagon serves as a signal to the liver to break down glycogen and release glucose into the blood.
In hepatocytes (liver cells), the main purpose of the breakdown of glycogen is for the release of glucose into the bloodstream for uptake by other cells. The phosphate group of glucose-6-phosphate is removed by the enzyme glucose-6-phosphatase, which is not present in myocytes, and the free glucose exits the cell via GLUT2 facilitated diffusion ...
Glycolysis results in the breakdown of glucose, but several reactions in the glycolysis pathway are reversible and participate in the re-synthesis of glucose (gluconeogenesis). [9] Glycolysis was the first metabolic pathway discovered: As glucose enters a cell, it is immediately phosphorylated by ATP to glucose 6-phosphate in the irreversible ...
The glycosome is a host of the main glycolytic enzymes in the pathway for glycolysis. This pathway is used to break down fatty acids for their carbon and energy. The entire process of glycolysis does not take place in the glycosome however. Rather, only the Embden-Meyerhof segment where the glucose enters into the glycosome.
Nearly all organisms that break down glucose utilize glycolysis. [2] Glucose regulation and product use are the primary categories in which these pathways differ between organisms. [2] In some tissues and organisms, glycolysis is the sole method of energy production. [2] This pathway is common to both anaerobic and aerobic respiration. [1]
The enzymes necessary to break down glucose are found in the cytoplasm, the viscous fluid that fills living cells, where the glycolytic reactions take place. [ 1 ] Citric acid cycle
Glucose uptake is the process by which glucose molecules are transported from the bloodstream into cells through specialized membrane proteins called glucose transporters, primarily via facilitated diffusion or active transport mechanisms: [1]