Search results
Results From The WOW.Com Content Network
A crest is a point on a surface wave where the displacement of the medium is at a maximum. A trough is the opposite of a crest, so the minimum or lowest point of the wave. When the crests and troughs of two sine waves of equal amplitude and frequency intersect or collide, while being in phase with each other, the result is called constructive ...
Crest and trough Crest The point on a wave with the maximum value or height. It is the location at the peak of the wave cycle as shown in picture to the right. Trough The opposite of a crest, so the minimum value or height in a wave. It is the location at the very lowest point of a wave cycle also shown in picture to right. Lee
The outcome is the rapid movement of the base of the wave up the swash slope and the disappearance of the wave crest. The front face and crest of the wave remain relatively smooth with little foam or bubbles, resulting in a very narrow surf zone, or no breaking waves at all. The short, sharp burst of wave energy means that the swash/backwash ...
Humpback whale breach sequence. A breach or a lunge is a leap out of the water, also known as cresting. The distinction between the two is fairly arbitrary: cetacean researcher Hal Whitehead defines a breach as any leap in which at least 40% of the animal's body clears the water, and a lunge as a leap with less than 40% clearance. [2]
The wave height – difference between the crest and trough elevation – is denoted as , the wavelength as and the phase speed as . In fluid dynamics, a trochoidal wave or Gerstner wave is an exact solution of the Euler equations for periodic surface gravity waves.
Rogue waves do not appear to have a single distinct cause but occur where physical factors such as high winds and strong currents cause waves to merge to create a single large wave. [1] Recent research suggests sea state crest-trough correlation leading to linear superposition may be a dominant factor in predicting the frequency of rogue waves. [3]
An "undertow" is a steady, offshore-directed compensation flow, which occurs below waves near the shore. Physically, nearshore, the wave-induced mass flux between wave crest and trough is onshore directed. This mass transport is localized in the upper part of the water column, i.e. above the wave troughs.
When the wave breaks and starts reducing in height, the radiation stress decreases as the amount of water that is elevated decreases. When this happens, the mean surface level increases — this is known as the setup. In the formation of a rip current, a wave propagates over a sandbar with a gap in it.