Search results
Results From The WOW.Com Content Network
In 1998, Schelter obtained permission to release Maxima as open-source software under the GNU General Public license and the source code was released later that year. Since his death in 2001, a group of Maxima enthusiasts have continued to provide technical support.
Maxima (/ ˈ m æ k s ɪ m ə /) is a powerful software package for performing computer algebra calculations in mathematics and the physical sciences. It is written in Common Lisp and runs on all POSIX platforms such as macOS , Unix , BSD , and Linux , as well as under Microsoft Windows and Android .
Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.
Adequality is a technique developed by Pierre de Fermat in his treatise Methodus ad disquirendam maximam et minimam [1] (a Latin treatise circulated in France c. 1636 ) to calculate maxima and minima of functions, tangents to curves, area, center of mass, least action, and other problems in calculus.
In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.
Maxima and minima x 2: Unique global minimum at x = 0. x 3: No global minima or maxima. Although the first derivative (3x 2) is 0 at x = 0, this is an inflection point. (2nd derivative is 0 at that point.) Unique global maximum at x = e. (See figure at right) x −x: Unique global maximum over the positive real numbers at x = 1/e.
The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are inflection points.. In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero.
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]