When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]

  3. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    These vectors capture information about the meaning of the word based on the surrounding words. The word2vec algorithm estimates these representations by modeling text in a large corpus . Once trained, such a model can detect synonymous words or suggest additional words for a partial sentence.

  4. Automatic vectorization - Wikipedia

    en.wikipedia.org/wiki/Automatic_vectorization

    Automatic vectorization, in parallel computing, is a special case of automatic parallelization, where a computer program is converted from a scalar implementation, which processes a single pair of operands at a time, to a vector implementation, which processes one operation on multiple pairs of operands at once.

  5. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    In linear algebra, a column vector with ⁠ ⁠ elements is an matrix [1] consisting of a single column of ⁠ ⁠ entries, for example, = [].. Similarly, a row vector is a matrix for some ⁠ ⁠, consisting of a single row of ⁠ ⁠ entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)

  6. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    A set of vectors is linearly independent if none is in the span of the others. Equivalently, a set S of vectors is linearly independent if the only way to express the zero vector as a linear combination of elements of S is to take zero for every coefficient a i. A set of vectors that spans a vector space is called a spanning set or generating set.

  7. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  8. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can also be used to solve unconstrained optimization problems such as energy minimization. It is commonly attributed to Magnus Hestenes and Eduard Stiefel, [1] [2] who programmed it on the Z4, [3] and extensively researched it. [4] [5] The biconjugate gradient method provides a generalization to non-symmetric matrices.

  9. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    Given a real matrix M and vector q, the linear complementarity problem LCP(q, M) seeks vectors z and w which satisfy the following constraints: w , z ⩾ 0 , {\displaystyle w,z\geqslant 0,} (that is, each component of these two vectors is non-negative)

  1. Related searches solving vectors graphically answer code for java 5 12

    source code for java