When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  3. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    Fermat's theorem on sums of two squares is strongly related with the theory of Gaussian primes.. A Gaussian integer is a complex number + such that a and b are integers. The norm (+) = + of a Gaussian integer is an integer equal to the square of the absolute value of the Gaussian integer.

  4. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    As Fermat did for the case n = 4, Euler used the technique of infinite descent. [50] The proof assumes a solution ( x , y , z ) to the equation x 3 + y 3 + z 3 = 0 , where the three non-zero integers x , y , and z are pairwise coprime and not all positive.

  5. Number theory - Wikipedia

    en.wikipedia.org/wiki/Number_theory

    This includes Fermat's little theorem (generalised by Euler to non-prime moduli); the fact that = + if and only if ; initial work towards a proof that every integer is the sum of four squares (the first complete proof is by Joseph-Louis Lagrange (1770), soon improved by Euler himself [55]); the lack of non-zero integer solutions to ...

  6. Disquisitiones Arithmeticae - Wikipedia

    en.wikipedia.org/wiki/Disquisitiones_Arithmeticae

    Disquisitiones Arithmeticae (Latin for Arithmetical Investigations) is a textbook on number theory written in Latin by Carl Friedrich Gauss in 1798, when Gauss was 21, and published in 1801, when he was 24. It had a revolutionary impact on number theory by making the field truly rigorous and systematic and paved the path for modern number theory.

  7. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    Fermat number Factor 1732 Euler + 1732 Euler (fully ... gave a full proof of necessity in 1837. The result is known as the Gauss–Wantzel theorem:

  8. Algebraic number theory - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_theory

    In this book Gauss brings together results in number theory obtained by mathematicians such as Fermat, Euler, Lagrange and Legendre and adds important new results of his own. Before the Disquisitiones was published, number theory consisted of a collection of isolated theorems and conjectures. Gauss brought the work of his predecessors together ...

  9. Gauss's lemma (number theory) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(number_theory)

    Gauss's lemma is used in many, [3]: Ch. 1 [3]: 9 but by no means all, of the known proofs of quadratic reciprocity. For example, Gotthold Eisenstein [ 3 ] : 236 used Gauss's lemma to prove that if p is an odd prime then