Search results
Results From The WOW.Com Content Network
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
Hansen solubility parameters were developed by Charles M. Hansen in his Ph.D thesis in 1967 [1] [2] as a way of predicting if one material will dissolve in another and form a solution. [3] They are based on the idea that like dissolves like where one molecule is defined as being 'like' another if it bonds to itself in a similar way.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
When equilibrium is established and the solid has not all dissolved, the solution is said to be saturated. The concentration of the solute in a saturated solution is known as the solubility. Units of solubility may be molar (mol dm −3) or expressed as mass per unit volume, such as μg mL −1. Solubility is temperature dependent.
The parameters may be derived from various experimental data such as the osmotic coefficient, mixed ion activity coefficients, and salt solubility. They can be used to calculate mixed ion activity coefficients and water activities in solutions of high ionic strength for which the Debye–Hückel theory is no longer adequate.
Solubility quantifies the dynamic equilibrium state achieved when the rate of dissolution equals the rate of precipitation. The consideration of the units makes the distinction clearer. The typical unit for dissolution rate is mol/s. The units for solubility express a concentration: mass per volume (mg/mL), molarity (mol/L), etc. [citation needed]
The cohesive energy density is the amount of energy needed to completely remove a unit volume of molecules from their neighbours to infinite separation (an ideal gas). This is equal to the heat of vaporization of the compound divided by its molar volume in the condensed phase. In order for a material to dissolve, these same interactions need to ...
It is also frequently referred to by the symbol P, especially in the English literature. It is also known as n-octanol-water partition ratio. [63] [64] [65] K ow, being a type of partition coefficient, serves as a measure of the relationship between lipophilicity (fat solubility) and hydrophilicity (water solubility) of a substance. The value ...