When.com Web Search

  1. Ad

    related to: optical band gap vs electronic clock parts diagram

Search results

  1. Results From The WOW.Com Content Network
  2. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    In this situation, there is a distinction between "optical band gap" and "electronic band gap" (or "transport gap"). The optical bandgap is the threshold for photons to be absorbed, while the transport gap is the threshold for creating an electron–hole pair that is not bound together. The optical bandgap is at lower energy than the transport gap.

  3. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    To understand how band structure changes relative to the Fermi level in real space, a band structure plot is often first simplified in the form of a band diagram. In a band diagram the vertical axis is energy while the horizontal axis represents real space. Horizontal lines represent energy levels, while blocks represent energy bands.

  4. Direct and indirect band gaps - Wikipedia

    en.wikipedia.org/wiki/Direct_and_indirect_band_gaps

    In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...

  5. Electroreflectance - Wikipedia

    en.wikipedia.org/wiki/Electroreflectance

    When the smallest band gap changes in size, this alters the optical reflectivity of the material more than the change in an already larger band gap. This can be explained by noticing that the smallest band gap determines a lot of the reflectivity, as lower energy photons cannot be absorbed and re-emitted.

  6. Urbach energy - Wikipedia

    en.wikipedia.org/wiki/Urbach_energy

    In the simplest description of a semiconductor, a single parameter is used to quantify the onset of optical absorption: the band gap, . In this description, semiconductors are described as being able to absorb photons above E G {\displaystyle E_{G}} , but are transparent to photons below E G {\displaystyle E_{G}} . [ 2 ]

  7. Light-emitting diode physics - Wikipedia

    en.wikipedia.org/wiki/Light-emitting_diode_physics

    The p–n junction in any direct band gap material emits light when electric current flows through it. This is electroluminescence. Electrons cross from the n-region and recombine with the holes existing in the p-region. Free electrons are in the conduction band of energy levels, while holes are in the valence energy band. Thus the energy level ...

  8. Heterojunction - Wikipedia

    en.wikipedia.org/wiki/Heterojunction

    Band diagram for straddling gap, n-n semiconductor heterojunction at equilibrium. The behaviour of a semiconductor junction depends crucially on the alignment of the energy bands at the interface. Semiconductor interfaces can be organized into three types of heterojunctions: straddling gap (type I), staggered gap (type II) or broken gap (type ...

  9. Band-gap engineering - Wikipedia

    en.wikipedia.org/wiki/Band-gap_engineering

    A band gap is the range in a solid where no electron state can exist. The band gap of insulators is much larger than in semiconductors. Conductors or metals have a much smaller or nonexistent band gap than semiconductors since the valence and conduction bands overlap. Controlling the band gap allows for the creation of desirable electrical ...