Search results
Results From The WOW.Com Content Network
In chemistry an eclipsed conformation is a conformation in which two substituents X and Y on adjacent atoms A, B are in closest proximity, implying that the torsion angle X–A–B–Y is 0°. [1] Such a conformation can exist in any open chain, single chemical bond connecting two sp 3-hybridised atoms, and it is normally a conformational ...
The staggered conformation is more stable by 12.5 kJ/mol than the eclipsed conformation, which is the energy maximum for ethane. In the eclipsed conformation the torsional angle is minimised. staggered conformation left, eclipsed conformation right in Newman projection
The diagram takes staggered and eclipsed conformations, as well as gauche and anti interactions into account. A staggered projection appears to have the surrounding species equidistant from each other. This kind of conformation tends to experience both anti and gauche interactions. [5]
The F–C–C–F dihedral angle is 68°, whereas the I–C–C–I dihedral angle is 180°. [1] In the study of conformational isomerism, the gauche effect is an atypical situation where a gauche conformation (groups separated by a torsion angle of approximately 60°) is more stable than the anti conformation (180°). [2]
More complex molecules, such as butane, have more than one possible staggered conformation. The anti conformation of butane is approximately 0.9 kcal mol −1 (3.8 kJ mol −1) more stable than the gauche conformation. [1] Both of these staggered conformations are much more stable than the eclipsed conformations.
Staggered conformation image right in Newman projection Eclipsed conformation. In organic chemistry, a staggered conformation is a chemical conformation of an ethane-like moiety abcX–Ydef in which the substituents a, b, and c are at the maximum distance from d, e, and f; this requires the torsion angles to be 60°. [1]
A plus (+) or minus (−) sign is placed at the front to indicate the sign of the dihedral angle. Anti or syn indicates the substituents are on opposite sides or the same side, respectively. Clinal substituents are found within 30° of either side of a dihedral angle of 60° (from 30° to 90°), 120° (90°–150°), 240° (210°–270°), or ...
Two limiting conformations are important: eclipsed conformation and staggered conformation. The staggered conformation is 12.6 kJ/mol (3.0 kcal/mol) lower in energy (more stable) than the eclipsed conformation (the least stable). In highly branched alkanes, the bond angle may differ from the optimal value (109.5°) to accommodate bulky groups.