Search results
Results From The WOW.Com Content Network
The one-electron universe postulate, proposed by theoretical physicist John Wheeler in a telephone call to Richard Feynman in the spring of 1940, is the hypothesis that all electrons and positrons are actually manifestations of a single entity moving backwards and forwards in time.
Thomson in 1897 was the first to suggest that one of the fundamental units of the atom was more than 1,000 times smaller than an atom, suggesting the subatomic particle now known as the electron. Thomson discovered this through his explorations on the properties of cathode rays.
In 1784, he was perhaps the first to utilize an electric spark to produce an explosion of hydrogen and oxygen in the proper proportions that would create pure water. Cavendish also discovered the inductive capacity of dielectrics (insulators), and, as early as 1778, measured the specific inductive capacity for beeswax and other substances by ...
Richard Phillips Feynman (/ ˈ f aɪ n m ə n /; May 11, 1918 – February 15, 1988) was an American theoretical physicist.He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superfluidity of supercooled liquid helium, and in particle physics, for which he proposed the parton model.
Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result. Increasingly small particles have been discovered and researched: they include molecules, which are constructed of atoms, that in turn consist of subatomic particles, namely atomic nuclei and electrons. Many more types ...
This field emerged in the middle of the 18th century, following electrical researches and the discovery of the effects of electricity on the human body by scientists including Bertrand Bajon and Ramón M. Termeyer in the 1760s, [8] and by John Walsh [9] [10] and Hugh Williamson in the 1770s. [11] [12]
This experiment was noted for extending the applicability of wave–particle duality by about one order of magnitude in the macroscopic direction. [25] In 2009, researchers from IBM managed to take the first picture of a real molecule. [26] Using an atomic force microscope every single atom and bond of a pentacene molecule could be imaged.
To create an electron-positron pair, the total energy of the photons, in the rest frame, must be at least 2m e c 2 = 2 × 0.511 MeV = 1.022 MeV (m e is the mass of one electron and c is the speed of light in vacuum), an energy value that corresponds to soft gamma ray photons.