Search results
Results From The WOW.Com Content Network
Full API for Java and, through add-on product, Matlab Runtime parsed mathematical expression in input files Fully scriptable in as m-file Matlab scripts and the GUI supports exporting models in script format automatic differentiation: Yes Yes Yes Forward-mode for Jacobian computation, symbolic differentiation capabilities multiphysics:
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.
An autonomous system is a system of ordinary differential equations of the form = (()) where x takes values in n-dimensional Euclidean space; t is often interpreted as time. ...
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
GNU Octave is a scientific programming language for scientific computing and numerical computation.Octave helps in solving linear and nonlinear problems numerically, and for performing other numerical experiments using a language that is mostly compatible with MATLAB.
In practice, it is usually possible to simplify the problem by replacing the full set of equations of state with a simple approximation. Some common approximations are: Vacuum: = Perfect fluid: = (+) + where =
For example, the computation of polynomial greatest common divisors is systematically used for the simplification of expressions involving fractions. This large amount of required computer capabilities explains the small number of general-purpose computer algebra systems.
For an arbitrary system of ODEs, a set of solutions (), …, are said to be linearly-independent if: + … + = is satisfied only for = … = =.A second-order differential equation ¨ = (,, ˙) may be converted into a system of first order linear differential equations by defining = ˙, which gives us the first-order system: