Search results
Results From The WOW.Com Content Network
The structural hierarchy in RNA is usually described in terms of a stem-loop 2D secondary structure, which further folds to form its 3D tertiary structure, stabilized by what are referred to as long range tertiary contacts. Most often the non-canonical base pairs are involved in those tertiary contacts or extra-stem base pairs.
The mRNA stem-loop structure forming at the ribosome binding site may control an initiation of translation. [4] [5] Stem-loop structures are also important in prokaryotic rho-independent transcription termination. The hairpin loop forms in an mRNA strand during transcription and causes the RNA polymerase to become dissociated from the DNA ...
DNA structure and bases A-B-Z-DNA Side View. Tertiary structure refers to the locations of the atoms in three-dimensional space, taking into consideration geometrical and steric constraints. It is a higher order than the secondary structure, in which large-scale folding in a linear polymer occurs and the entire chain is folded into a specific 3 ...
The secondary structures of biological DNAs and RNAs tend to be different: biological DNA mostly exists as fully base paired double helices, while biological RNA is single stranded and often forms complex and intricate base-pairing interactions due to its increased ability to form hydrogen bonds stemming from the extra hydroxyl group in the ...
Because of the large size of hemocyanin, it is usually found free-floating in the blood, unlike hemoglobin. [15] The 3.8 MDa structure of molluscan Japanese flying squid hemocyanin. It is a homodecamer of five dimers arranged into a 31 nm diameter cylinder.
The two pathways for homologous recombination in eukaryotes, showing the formation and resolution of Holliday junctions. The Holliday junction is a key intermediate in homologous recombination, a biological process that increases genetic diversity by shifting genes between two chromosomes, as well as site-specific recombination events involving integrases.
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
Ten years after James Watson and Francis Crick published their model of the DNA double helix, [2] Karst Hoogsteen reported [3] a crystal structure of a complex in which analogues of A and T formed a base pair that had a different geometry from that described by Watson and Crick. Similarly, an alternative base-pairing geometry can occur for G ...