When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity to the linear algebra of bilinear forms. Two elements u and v of a vector space with bilinear form B {\displaystyle B} are orthogonal when B ( u , v ) = 0 {\displaystyle B(\mathbf {u} ,\mathbf {v} )=0} .

  3. Orthogonality - Wikipedia

    en.wikipedia.org/wiki/Orthogonality

    The line segments AB and CD are orthogonal to each other. In mathematics, orthogonality is the generalization of the geometric notion of perpendicularity.Whereas perpendicular is typically followed by to when relating two lines to one another (e.g., "line A is perpendicular to line B"), [1] orthogonal is commonly used without to (e.g., "orthogonal lines A and B").

  4. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...

  5. Spherical harmonics - Wikipedia

    en.wikipedia.org/wiki/Spherical_harmonics

    The expansion coefficients are the analogs of Fourier coefficients, and can be obtained by multiplying the above equation by the complex conjugate of a spherical harmonic, integrating over the solid angle Ω, and utilizing the above orthogonality relationships. This is justified rigorously by basic Hilbert space theory.

  6. Orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_polynomials

    It induces a notion of orthogonality in the usual way, namely that two polynomials are orthogonal if their inner product is zero. Then the sequence ( P n ) ∞ n =0 of orthogonal polynomials is defined by the relations deg ⁡ P n = n , P m , P n = 0 for m ≠ n . {\displaystyle \deg P_{n}=n~,\quad \langle P_{m},\,P_{n}\rangle =0\quad {\text ...

  7. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    The orthogonality and completeness of this set of solutions follows at once from the larger framework of Sturm–Liouville theory. The differential equation admits another, non-polynomial solution, the Legendre functions of the second kind. A two-parameter generalization of (Eq.

  8. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections.It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic.

  9. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    The construction of orthogonality of vectors is motivated by a desire to extend the intuitive notion of perpendicular vectors to higher-dimensional spaces. In the Cartesian plane, two vectors are said to be perpendicular if the angle between them is 90° (i.e. if they form a right angle).