Search results
Results From The WOW.Com Content Network
Figurate numbers were a concern of the Pythagorean worldview. It was well understood that some numbers could have many figurations, e.g. 36 is a both a square and a triangle and also various rectangles. The modern study of figurate numbers goes back to Pierre de Fermat, specifically the Fermat polygonal number theorem.
Proof without words that a hexagonal number (middle column) can be rearranged as rectangular and odd-sided triangular numbers. A hexagonal number is a figurate number.The nth hexagonal number h n is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.
In mathematics, a polygonal number is a number that counts dots arranged in the shape of a regular polygon [1]: 2-3 . These are one type of 2-dimensional figurate numbers . Polygonal numbers were first studied during the 6th century BC by the Ancient Greeks, who investigated and discussed properties of oblong , triangular , and square numbers ...
Pages in category "Figurate numbers" The following 51 pages are in this category, out of 51 total. This list may not reflect recent changes. ...
Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The n th triangular number is the number of dots in the triangular arrangement with n dots on each side, and is equal to the sum of the n natural numbers from 1 to n. The sequence of triangular numbers, starting with the 0th triangular number, is
In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broader topic of figurate numbers representing the numbers of points forming regular patterns within different shapes.
In mathematics, a heptagonal number is a figurate number that is constructed by combining heptagons with ascending size. The n -th heptagonal number is given by the formula H n = 5 n 2 − 3 n 2 {\displaystyle H_{n}={\frac {5n^{2}-3n}{2}}} .
This is also the number of points of a hexagonal lattice with nearest-neighbor coupling whose distance from a given point is less than or equal to . The following image shows the building of the centered triangular numbers by using the associated figures: at each step, the previous triangle (shown in red) is surrounded by a triangular layer of ...