Search results
Results From The WOW.Com Content Network
P. vulgaris can also test urease negative in solid media (such as in Enterotube), but will be urease positive in liquid media. The CCIS code will still identify it with a negative urease test. When inoculated in a gelatin stab test, P. vulgaris is capable of hydrolysis of gelatin. [2]
The catalase test tests whether a microbe produces the enzyme catalase, which catalyzes the breakdown of hydrogen peroxide. Smearing a colony sample onto a glass slide and adding a solution of hydrogen peroxide (3% H 2 O 2) will indicate whether the enzyme is present or not. Bubbling is a positive test while nothing happening is a negative ...
Nonpathogenic S. epidermidis unlike pathogenic S. aureus does not possess the gelatinase enzyme, so it cannot hydrolyze gelatin. [12] [13] It is sensitive to novobiocin, providing an important test to distinguish it from Staphylococcus saprophyticus, which is coagulase-negative, as well, but novobiocin-resistant. [4]
The bacterium is positive for gelatin hydrolysis, albumin digestion, tributyrin digestion, tributyrin hydrolysis, E.coli cell autolysis, and casein hydrolysis. [3] On its fish host, the pathogen can be found on external and internal sites such as skin/mucus, gills, brain, ascites, lesions, mucus, kidney, spleen, and reproductive excretions of ...
These specific proteases use hydrolysis to break down gelatin through two sequential steps. The first produces polypeptide products, followed by amino acids (typically alpha amino acids). [5] The substrate in this case is gelatin, and the products are the polypeptides formed. Gelatinase binds to the substrate, gelatin, due to specificity of ...
A. salmonicida tests negative for indole formation, coagulase, hydrolysis of starch, casein, triglycerides, and phospholipids, hydrogen sulfide production, citrate use, phenylalanine, and the Voges–Proskauer (butanediol fermentation) test. It tests positive for oxidase, lysine decarboxylase, methyl red, gelatin hydrolysis, and catalase. [5]
Initially, identification was based on phenotypic characteristics such as growth temperature, colony morphology, growth medium, carbon sources, gelatin hydrolysis, glucose fermentation, among others. This method allowed identification of A. calcoaceticus–A. baumannii complex by the formation of smooth, rounded, mucoid colonies at 37 °C.
The bacteria doesn't produce CO 2 for the Oxidase test. The Nitrate reductase test results in Nitrate not reducing to Nitrite, so it reduces to something other than this. Gelatin doesn't liquify/hydrolyzed, which would prove if the bacteria produces gelatinases. On a blood agar containing sheep or horse blood, the agar shows ß-hemolytic. [10]