When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Penrose–Hawking singularity theorems - Wikipedia

    en.wikipedia.org/wiki/Penrose–Hawking...

    A key tool used in the formulation and proof of the singularity theorems is the Raychaudhuri equation, which describes the divergence of a congruence (family) of geodesics. The divergence of a congruence is defined as the derivative of the log of the determinant of the congruence volume. The Raychaudhuri equation is

  3. Penrose diagram - Wikipedia

    en.wikipedia.org/wiki/Penrose_diagram

    Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v. In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity.

  4. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    The black hole event horizon bordering exterior region I would coincide with a Schwarzschild t-coordinate of + while the white hole event horizon bordering this region would coincide with a Schwarzschild t-coordinate of , reflecting the fact that in Schwarzschild coordinates an infalling particle takes an infinite coordinate time to reach the ...

  5. Gravitational singularity - Wikipedia

    en.wikipedia.org/wiki/Gravitational_singularity

    Equations for these physical theories predict that the ball of mass of some quantity becomes infinite or increases without limit. This is generally a sign for a missing piece in the theory, as in the ultraviolet catastrophe , re-normalization , and instability of a hydrogen atom predicted by the Larmor formula .

  6. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    Even after such symmetry reductions, the reduced system of equations is often difficult to solve. For example, the Ernst equation is a nonlinear partial differential equation somewhat resembling the nonlinear Schrödinger equation (NLS). But recall that the conformal group on Minkowski spacetime is the symmetry group of the Maxwell equations.

  7. Algebraic Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_Riccati_equation

    which is known as the discrete-time dynamic Riccati equation of this problem. The steady-state characterization of P, relevant for the infinite-horizon problem in which T goes to infinity, can be found by iterating the dynamic equation repeatedly until it converges; then P is characterized by removing the time subscripts from the dynamic equation.

  8. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    A particular form of the LQ problem that arises in many control system problems is that of the linear quadratic regulator (LQR) where all of the matrices (i.e., , , , and ) are constant, the initial time is arbitrarily set to zero, and the terminal time is taken in the limit (this last assumption is what is known as infinite horizon). The LQR ...

  9. Bekenstein bound - Wikipedia

    en.wikipedia.org/wiki/Bekenstein_bound

    According to the Bekenstein bound, the entropy of a black hole is proportional to the number of Planck areas that it would take to cover the black hole's event horizon.. In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of ...