When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Uranium-235 - Wikipedia

    en.wikipedia.org/wiki/Uranium-235

    Uranium-235 (235 U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nature as a primordial nuclide. Uranium-235 has a half-life of 703.8 million years.

  3. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    Uranium-235 makes up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a fission chain reaction. It is the only fissile isotope that is a primordial nuclide or found in significant quantity in nature. Uranium-235 has a half-life of 703.8 million years.

  4. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.

  5. Six factor formula - Wikipedia

    en.wikipedia.org/wiki/Six_factor_formula

    The symbols are defined as: [2], and are the average number of neutrons produced per fission in the medium (2.43 for uranium-235). and are the microscopic fission and absorption cross sections for fuel, respectively.

  6. List of nuclides - Wikipedia

    en.wikipedia.org/wiki/List_of_nuclides

    The number of protons (Z column) and number of neutrons (N column). ... Naturally occurring decay product (of thorium-232, uranium-238, and uranium-235); ESS

  7. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    1) A uranium-235 atom absorbs a neutron and fissions into two fission fragments, releasing three new neutrons and a large amount of binding energy. 2) One of those neutrons is absorbed by an atom of uranium-238, and does not continue the reaction. Another neutron leaves the system without being absorbed.

  8. Uranium - Wikipedia

    en.wikipedia.org/wiki/Uranium

    Most neutrons released by a fissioning atom of uranium-235 must impact other uranium-235 atoms to sustain the nuclear chain reaction. The concentration and amount of uranium-235 needed to achieve this is called a 'critical mass'. To be considered 'enriched', the uranium-235 fraction should be between 3% and 5%. [123]

  9. Enriched uranium - Wikipedia

    en.wikipedia.org/wiki/Enriched_uranium

    Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).