When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Allotropes of carbon - Wikipedia

    en.wikipedia.org/wiki/Allotropes_of_carbon

    Diamond is clear and transparent, but graphite is black and opaque. Diamond is the hardest mineral known (10 on the Mohs scale), but graphite is one of the softest (1–2 on Mohs scale). Diamond is the ultimate abrasive, but graphite is soft and is a very good lubricant. Diamond is an excellent electrical insulator, but graphite is an excellent ...

  3. Material properties of diamond - Wikipedia

    en.wikipedia.org/wiki/Material_properties_of_diamond

    Diamond and graphite are two allotropes of carbon: pure forms of the same element that differ in structure. If heated over 700 °C (1,292 °F) in air, diamond, being a form of carbon, oxidizes and its surface blackens, but the surface can be restored by re-polishing. [ 47 ]

  4. Diamond - Wikipedia

    en.wikipedia.org/wiki/Diamond

    Above the graphite–diamond–liquid carbon triple point, the melting point of diamond increases slowly with increasing pressure; but at pressures of hundreds of GPa, it decreases. [14] At high pressures, silicon and germanium have a BC8 body-centered cubic crystal structure, and a similar structure is predicted for carbon at high pressures.

  5. Superhard material - Wikipedia

    en.wikipedia.org/wiki/Superhard_material

    Diamond and graphite materials and structure. Diamond is an allotrope of carbon where the atoms are arranged in a modified version of face-centered cubic (fcc) structure known as "diamond cubic". It is known for its hardness (see table above) and incompressibility and is targeted for some potential optical and electrical applications.

  6. Lonsdaleite - Wikipedia

    en.wikipedia.org/wiki/Lonsdaleite

    Its diamond structure can be considered to be made up of interlocking rings of six carbon atoms, in the chair conformation. In lonsdaleite, some rings are in the boat conformation instead. At nanoscale dimensions, cubic diamond is represented by diamondoids while hexagonal diamond is represented by wurtzoids. [10]

  7. Allotropy - Wikipedia

    en.wikipedia.org/wiki/Allotropy

    Diamond and graphite are two allotropes of carbon: pure forms of the same element that differ in crystalline structure.. Allotropy or allotropism (from Ancient Greek ἄλλος (allos) 'other' and τρόπος (tropos) 'manner, form') is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements.

  8. Cleavage (crystal) - Wikipedia

    en.wikipedia.org/wiki/Cleavage_(crystal)

    Diamond and graphite provide examples of cleavage. Each is composed solely of a single element, carbon. In diamond, each carbon atom is bonded to four others in a tetrahedral pattern with short covalent bonds. The planes of weakness (cleavage planes) in a diamond are in four directions, following the faces of the octahedron.

  9. Graphite - Wikipedia

    en.wikipedia.org/wiki/Graphite

    Another high-temperature lubricant, hexagonal boron nitride, has the same molecular structure as graphite. It is sometimes called white graphite, due to its similar properties. When a large number of crystallographic defects bind these planes together, graphite loses its lubrication properties and becomes what is known as pyrolytic graphite.