When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    By the fundamental theorem of calculus, it can be seen that the integral of the acceleration function a(t) is the velocity function v(t); that is, the area under the curve of an acceleration vs. time (a vs. t) graph corresponds to the change of velocity.

  5. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    These relationships can be demonstrated graphically. The gradient of a line on a displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under a graph of acceleration versus time is equal to the change in velocity.

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows from solving [1] for

  7. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    A primary design goal for motion control is to minimize the transition time without exceeding speed, acceleration, or jerk limits. Consider a third-order motion-control profile with quadratic ramping and deramping phases in velocity (see figure).

  8. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    As seen by the three green tangent lines in the figure, an object's instantaneous acceleration at a point in time is the slope of the line tangent to the curve of a v(t) graph at that point. In other words, instantaneous acceleration is defined as the derivative of velocity with respect to time: [ 9 ] a = d v d t . {\displaystyle {\boldsymbol ...

  9. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The acceleration of the particle is the limit of the average acceleration as the time ... relationship of speed versus position. ... a velocity–time graph ...