Ad
related to: awg to kcmil chart conversion
Search results
Results From The WOW.Com Content Network
However, AWG is dissimilar to IEC 60228, the metric wire-size standard used in most parts of the world, based directly on the wire cross-section area (in square millimetres, mm 2). The AWG tables are for a single, solid and round conductor. The AWG of a stranded wire is determined by the cross-sectional area of the equivalent solid conductor.
Standard sizes are from 250 to 400 in increments of 50 kcmil, 400 to 1000 in increments of 100 kcmil, and from 1000 to 2000 in increments of 250 kcmil. [6] The diameter in the table below is that of a solid rod with the given conductor area in circular mils.
Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid – in the SVG file, hover over a size to highlight it The first attempt to adopt a geometrical system was made by Messrs Brown & Sharpe in 1855.
Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid, by CMG Lee. In the SVG file, hover over an item to highlight it. Width: 100%: Height: 100%
A table of the gauge numbers and wire diameters is shown below. [1] [2] The basis of the system is the thou (or mil in US English), or 0.001 in. Sizes are specified as wire diameters, stated in thou and tenths of a thou (mils and tenths). The wire diameter diminishes with increasing size number.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
See also , a chart comparing all known wire gauges to each other. Pages in category "Wire gauges" The following 11 pages are in this category, out of 11 total.
Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid – in the SVG file, hover over a size to highlight it. In engineering applications, it is often most convenient to describe a wire in terms of its cross-section area, rather than its diameter, because the cross section is directly proportional to its strength and weight ...