Search results
Results From The WOW.Com Content Network
Lazy evaluation is difficult to combine with imperative features such as exception handling and input/output, because the order of operations becomes indeterminate. The opposite of lazy evaluation is eager evaluation, sometimes known as strict evaluation. Eager evaluation is the evaluation strategy employed in most [quantify] programming languages.
Lazy Systematic Unit Testing [1] is a software unit testing method based on the two notions of lazy specification, the ability to infer the evolving specification of a unit on-the-fly by dynamic analysis, and systematic testing, the ability to explore and test the unit's state space exhaustively to bounded depths.
Passive testing means verifying the system's behavior without any interaction with the software product. Contrary to active testing, testers do not provide any test data but look at system logs and traces. They mine for patterns and specific behavior in order to make some kind of decisions. [25]
A JUnit test fixture is a Java object. Test methods must be annotated by the @Test annotation. If the situation requires it, [21] it is also possible to define a method to execute before (or after) each (or all) of the test methods with the @BeforeEach (or @AfterEach) and @BeforeAll (or @AfterAll) annotations. [22] [23]
Test-driven development does not perform sufficient testing in situations where full functional tests are required to determine success or failure, due to extensive use of unit tests. [38] Examples of these are user interfaces, programs that work with databases, and some that depend on specific network configurations.
Short-circuit evaluation, minimal evaluation, or McCarthy evaluation (after John McCarthy) is the semantics of some Boolean operators in some programming languages in which the second argument is executed or evaluated only if the first argument does not suffice to determine the value of the expression: when the first argument of the AND function evaluates to false, the overall value must be ...
In software engineering, code coverage, also called test coverage, is a percentage measure of the degree to which the source code of a program is executed when a particular test suite is run. A program with high code coverage has more of its source code executed during testing, which suggests it has a lower chance of containing undetected ...
Java memory use is much higher than C++'s memory use because: There is an overhead of 8 bytes for each object and 12 bytes for each array [61] in Java. If the size of an object is not a multiple of 8 bytes, it is rounded up to next multiple of 8. This means an object holding one byte field occupies 16 bytes and needs a 4-byte reference.