When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. RL circuit - Wikipedia

    en.wikipedia.org/wiki/RL_circuit

    A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. [1] A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source.

  3. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.

  4. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    Many circuits can be analyzed as a combination of series and parallel circuits, along with other configurations. In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [ 1 ]

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Larmor formula; Lenz law; ... Parallel circuit; Resistance; Resonant cavities; Series circuit; ... Series circuit equations RC circuits: Circuit equation

  6. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    For a parallel RLC circuit, the Q factor is the inverse of the series case: [21] [20] = = = [22] Consider a circuit where R, L, and C are all in parallel. The lower the parallel resistance is, the more effect it will have in damping the circuit and thus result in lower Q. This is useful in filter design to determine the bandwidth.

  7. Thévenin's theorem - Wikipedia

    en.wikipedia.org/wiki/Thévenin's_theorem

    That means an ideal voltage source is replaced with a short circuit, and an ideal current source is replaced with an open circuit. Resistance can then be calculated across the terminals using the formulae for series and parallel circuits. This method is valid only for circuits with independent sources.

  8. Network synthesis - Wikipedia

    en.wikipedia.org/wiki/Network_synthesis

    Foster's realisation was limited to LC networks and was in one of two forms; either a number of series LC circuits in parallel, or a number of parallel LC circuits in series. Foster's method was to expand () into partial fractions. Cauer showed that Foster's method could be extended to RL and RC networks.

  9. Foster's reactance theorem - Wikipedia

    en.wikipedia.org/wiki/Foster's_reactance_theorem

    Foster's second form of driving point impedance consists of a number of parallel connected series LC circuits. The realisation of the driving point impedance is by no means unique. Foster's realisation has the advantage that the poles and/or zeroes are directly associated with a particular resonant circuit, but there are many other realisations.