Search results
Results From The WOW.Com Content Network
The normal deviate mapping (or normal quantile function, or inverse normal cumulative distribution) is given by the probit function, so that the horizontal axis is x = probit(P fa) and the vertical is y = probit(P fr), where P fa and P fr are the false-accept and false-reject rates.
However, in most fielded systems, unwanted clutter and interference sources mean that the noise level changes both spatially and temporally. In this case, a changing threshold can be used, where the threshold level is raised and lowered to maintain a constant probability of false alarm. This is known as constant false alarm rate (CFAR) detection.
The false coverage rate (FCR) is, in a sense, the FDR analog to the confidence interval. FCR indicates the average rate of false coverage, namely, not covering the true parameters, among the selected intervals. The FCR gives a simultaneous coverage at a level for all of the parameters considered in the problem.
The true-positive rate is also known as sensitivity or probability of detection. [1] The false-positive rate is also known as the probability of false alarm [1] and equals (1 − specificity). The ROC is also known as a relative operating characteristic curve, because it is a comparison of two operating characteristics (TPR and FPR) as the ...
V is the number of false positives (Type I error) (also called "false discoveries") S is the number of true positives (also called "true discoveries") T is the number of false negatives (Type II error) U is the number of true negatives = + is the number of rejected null hypotheses (also called "discoveries", either true or false)
This statistics -related article is a stub. You can help Wikipedia by expanding it.
where is the inverse cumulative distribution function of the standard normal. The Bayes discriminability between univariate or multivariate normal distributions can be numerically computed [1] (Matlab code), and may also be used as an approximation when the distributions are close to normal.
The false positive rate is calculated as the ratio between the number of negative events wrongly categorized as positive (false positives) and the total number of actual negative events (regardless of classification). The false positive rate (or "false alarm rate") usually refers to the expectancy of the false positive ratio.